The non-extensibility of D(4k)-triples {1, 4k(k-1), 4k^2+1} with |k| prime

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the family of Diophantine triples { k − 1 , k + 1 , 16 k 3 − 4 k }

It is proven that if k ≥ 2 is an integer and d is a positive integer such that the product of any two distinct elements of the set {k − 1, k + 1, 16k − 4k, d} increased by 1 is a perfect square, then d = 4k or d = 64k−48k+8k. Together with a recent result of Fujita, this shows that all Diophantine quadruples of the form {k − 1, k + 1, c, d} are regular.

متن کامل

SUMS OF THE FORM 1 / x k 1 + · · · + 1 / x kn MODULO A PRIME

Using a sum-product result due to Bourgain, Katz, and Tao, we show that for every 0 < 2 ≤ 1, and every integer k ≥ 1, there exists an integer N = N(2, k), such that for every prime p and every residue class a (mod p), there exist positive integers x1, ..., xN ≤ p satisfying a ≡ 1 x1 + · · ·+ 1 xN (mod p).

متن کامل

Asymptotically Exact Heuristics for Prime Divisors of the Sequence { a k + b k } ∞ k = 1

Let Na,b(x) count the number of primes p ≤ x with p dividing ak + bk for some k ≥ 1. It is known that Na,b(x) ∼ c(a, b)x/ log x for some rational number c(a, b) that depends in a rather intricate way on a and b. A simple heuristic formula for Na,b(x) is proposed and it is proved that it is asymptotically exact, i.e., has the same asymptotic behavior as Na,b(x). Connections with Ramanujan sums a...

متن کامل

Balancing Diophantine triples with distance 1

For a positive real number w let the Balancing distance ‖w‖B be the distance from w to the closest Balancing number. The Balancing sequence is defined by the initial values B0 = 0, B1 = 1 and by the binary recurrence relation Bn+2 = 6Bn+1 − Bn , n ≥ 0. In this paper, we show that there exist only one positive integer triple (a, b, c) such that the Balancing distances ‖ab‖B , ‖ac‖B and ‖bc‖B all...

متن کامل

1 U ( 1 ) extensions of the SM and spectral triples

We study all possible U(1)-extensions of the standard model (SM) in the framework of noncommutative geometry (NCG) with the algebra H ⊕ C ⊕ C ⊕ M3(C). Comparison to experimental data about the mass of a hypothetical Z ′ gauge boson leads to the necessity of introducing at least one new family of heavy fermions. PACS-92: 11.15 Gauge field theories MSC-91: 81E13 Yang-Mills and other gauge theorie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasnik Matematicki

سال: 2006

ISSN: 0017-095X

DOI: 10.3336/gm.41.2.03